Background: Merkel cell carcinoma (MCC) is an aggressive malignant neuroendocrine tumour. There are two subsets of MCC, one related to Merkel cell polyomavirus (MCPyV) and the other to ultraviolet radiation (UVR). MCPyV-positive and MCPyV-negative MCCs have been considered to be different tumours, as the former harbour few DNA mutations and are not related to UVR, and the latter usually arise in sun-exposed areas and may be found in conjunction with other keratinocytic tumours, mostly squamous cell carcinomas. Two viral oncoproteins, large T antigen (LT; coded by MCPyV_gp3) and small T antigen (sT; coded by MCPyV_gp4), promote different carcinogenic pathways.
Objectives: To determine which genes are differentially expressed in MCPyV-positive and MCPyV-negative MCC; to describe the mutational burden and the most frequently mutated genes in both MCC subtypes; and to identify the clinical and molecular factors that may be related to patient survival.
Methods: Ninety-two patients with a diagnosis of MCC were identified from the medical databases of participating centres. To study gene expression, a customized panel of 172 genes was developed. Gene expression profiling was performed with nCounter technology. For mutational studies, a customized panel of 26 genes was designed. Somatic single nucleotide variants (SNVs) were identified following the GATK Best Practices workflow for somatic mutations.
Results: The expression of LT enabled the series to be divided into two groups (LT positive, n = 55; LT negative, n = 37). Genes differentially expressed in LT-negative patients were related to epithelial differentiation, especially SOX9, or proliferation and the cell cycle (MYC, CDK6), among others. Congruently, LT displayed lower expression in SOX9-positive patients, and differentially expressed genes in SOX9-positive patients were related to epithelial/squamous differentiation. In LT-positive patients, the mean SNV frequency was 4.3; in LT-negative patients it was 10 (P = 0.03). On multivariate survival analysis, the expression of SNAI1 [hazard ratio (HR) 1.046, 95% confidence interval (CI) 1.007-1.086; P = 0.02] and CDK6 (HR 1.049, 95% CI 1.020-1.080; P = 0.001) were identified as risk factors.
Conclusions: Tumours with weak LT expression tend to co-express genes related to squamous differentiation and the cell cycle, and to have a higher mutational burden. These findings are congruent with those of earlier studies.
Merkel cell carcinoma (MCC) is an aggressive form of skin tumour. There are two subtypes of MCC: one of them is related to a virus called Merkel cell polyomavirus (MCPyV); the other one is related to persistent exposure to sunlight. The aim of this research was to find differences between these subtypes in their molecular behaviour (the genes that are expressed and the mutations that may be found). To do this, we carried out two studies, one to investigate gene expression (the process cells use to convert the instructions in our DNA into a functional product such as a protein) and one to look at gene mutations (changes in the DNA sequence). We found that the tumours that were not related to MCPyV expressed genes related to epithelial differentiation (the process by which unspecialized cells gain features characteristics of epithelial cells, which, among other things, make up the outer surface of the body), which means that the origin of both MCC subtypes may be different. We also found that MCPyV-related tumours had fewer mutations. Our findings are important because they help us to understand the biology of the MCC subtypes and could help with the development of new treatments for people diagnosed with skin tumours.
© The Author(s) 2024. Published by Oxford University Press on behalf of British Association of Dermatologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.