Plant-derived nanovesicles (PDNVs) derived from natural green products have emerged as an attractive nanoplatform in biomedical application. They are usually characterized by unique structural and biological functions, such as the bioactive lipids/proteins/nucleic acids as therapeutics and targeting groups, immune-modulation, and long-term circulation. With the rapid development of nanotechnology, materials, and synthetic chemistry, PDNVs can be engineered with multiple functions for efficient drug delivery and specific killing of diseased cells, which represent an innovative biomaterial with high biocompatibility for fighting against cancer. In this review, we provide an overview of the state-of-the-art studies concerning the development of PDNVs for cancer therapy. The original sources, methods for obtaining PDNVs, composition and structure are introduced systematically. With an emphasis on the featured application, the inherent anticancer properties of PDNVs as well as the strategies in constructing multifunctional PDNVs-based nanomaterials will be discussed in detail. Finally, some scientific issues and technical challenges of PDNVs as promising options in improving anticancer therapy will be discussed, which are expected to promote the further development of PDNVs in clinical translation.