The aim of this study was to examine the expression changes of H2S, IGF-1, and GH in traumatic brain injury (TBI) patients and to detect their neuroprotective functions after TBI. In this study, we first collected cerebrospinal fluid (CSF) and plasma from TBI patients at different times after injury and evaluated the concentrations of H2S, IGF-1, and GH. In vitro studies were using the scratch-induced injury model and cell-cell interaction model (HT22 hippocampal neurons co-cultured with LPS-induced BV2 microglia cells). In vivo studies were using the controlled cortical impact (CCI) model in mice. Cell viability was assessed by CCK-8 assay. Pro-inflammatory cytokines expression was determined by qRT-PCR, ELISA, and nitric oxide production. Western blot was performed to assess the expression of CBS, CSE, IGF-1, and GHRH. Moreover, the recovery of TBI mice was evaluated for behavioral function by applying the modified Neurological Severity Score (mNSS), the Rotarod test, and the Morris water maze. We discovered that serum H2S, CSF H2S, and serum IGF-1 concentrations were all adversely associated with the severity of the TBI, while the concentrations of IGF-1 and GH in CSF and GH in the serum were all positively related to TBI severity. Experiments in vitro and in vivo indicated that treatment with NaHS (H2S donor), IGF-1, and MR-409 (GHRH agonist) showed protective effects after TBI. This study gives novel information on the functions of H2S, IGF-1, and GH in TBI.
Keywords: GH; H2S; IGF-1; Traumatic brain injury.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.