Mechanical energy flow analysis in athletes with and without anterior cruciate ligament reconstruction during single-leg drop landing

Sci Rep. 2024 Jan 15;14(1):1321. doi: 10.1038/s41598-024-51631-5.

Abstract

Techniques that reduce mechanical energy have been linked to lower chances of experiencing an Anterior Cruciate Ligament (ACL) injury. Although there is evidence that movement patterns are altered in athletes who have undergone Anterior Cruciate Ligament Reconstruction (ACLR), energy transfer mechanisms have not been examined. This study aimed to compare energy flow mechanisms during single-leg drop landing between athletes with and without history of ACLR. A total of 20 female athletes were included in this study. Ten participants underwent ACLR 12 months ago (mean age, 21.57 ± 0.41 years) and 10 were healthy controls (mean age, 20.89 ± 0.21 years). Participants executed the single-leg drop landing (SLL) maneuver by descending from a 30 cm wooden box and landing on the tested leg on an embedded force plate. Information collected during the SLL trials was refined using rigid-body analysis and inverse dynamics within Nexus software, ultimately allowing construction of skeletal models of the athletes. Ankle and knee mechanical energy expenditure (MEE) was higher in the control participants during landing. However, the result for the hip MEE demonstrated that MEE of the control group was significantly lower compared with the ACLR group, but MEE of the control subjects was higher as compared to ACLR group (p ˂ 0.05). Results suggest the avoidant use of the quadriceps muscle post ACLR leads to knee-avoidant mechanics and loss of knee joint power generation during a SLL task.

MeSH terms

  • Adult
  • Anterior Cruciate Ligament Injuries* / surgery
  • Anterior Cruciate Ligament Reconstruction*
  • Athletes
  • Biomechanical Phenomena
  • Female
  • Humans
  • Knee Joint / surgery
  • Leg / surgery
  • Young Adult