Cyanobacteria are excellent autotrophic photosynthetic chassis employed in synthetic biology, and previous studies have suggested that they have alkaline tolerance but low acid tolerance, significantly limiting their productivity as photosynthetic chassis and necessitating investigations into the acid stress resistance mechanism. In this study, differentially expressed genes were obtained by RNA sequencing-based comparative transcriptomic analysis under long-term acidic stress conditions and acidic shock treatment, in the model cyanobacterium Synechococcus elongatus PCC 7942. A pathway enrichment analysis revealed the upregulated and downregulated pathways during long-term acidic and shock stress treatment. The subsequent single gene knockout and phenotype analysis showed that under acidic stress conditions, the strains with chlL, chlN, pex, synpcc7942_2038, synpcc7942_1890, or synpcc7942_2547 knocked out grew worse than the wild type, suggesting their involvement in acid tolerance. This finding was further confirmed by introducing the corresponding genes back into the knockout mutant individually. Moreover, individual overexpression of the chlL and chlN genes in the wild type successfully improved the tolerance of S. elongatus PCC 7942 to acidic stress. This work successfully identified six genes involved in acidic stress responses, and overexpressing chIL or chIN individually successfully improved acid tolerance in S. elongatus PCC 7942, providing valuable information to better understand the acid resistance mechanism in S. elongatus PCC 7942 and novel insights into the robustness and tolerance engineering of cyanobacterial chassis. KEY POINTS: • DEGs were identified by RNA-seq based transcriptomics analysis in response to acidic stress in S. elongatus PCC 7942. • Six genes were identified to be involved in acid tolerance in S. elongatus PCC 7942. • Overexpression of chIL or chIN individually successfully improved the acid tolerance of S. elongatus PCC 7942.
Keywords: Acid tolerance; Chassis; Cyanobacteria; Engineering target; Transcriptomics.
© 2024. The Author(s).