SIRT1 Promotes Cisplatin Resistance in Bladder Cancer via Beclin1 Deacetylation-Mediated Autophagy

Cancers (Basel). 2023 Dec 26;16(1):125. doi: 10.3390/cancers16010125.

Abstract

Autophagy-dependent cisplatin resistance poses a challenge in bladder cancer treatment. SIRT1, a protein deacetylase, is involved in autophagy regulation. However, the precise mechanism through which SIRT1 mediates cisplatin resistance in bladder cancer via autophagy remains unclear. In this study, we developed a cisplatin-resistant T24/DDP cell line to investigate this mechanism. The apoptosis rate and cell viability were assessed using flow cytometry and the CCK8 method. The expression levels of the relevant RNA and protein were determined using RT-qPCR and a Western blot analysis, respectively. Immunoprecipitation was utilized to validate the interaction between SIRT1 and Beclin1, as well as to determine the acetylation level of Beclin1. The findings indicated the successful construction of the T24/DDP cell line, which exhibited autophagy-dependent cisplatin resistance. Inhibiting autophagy significantly reduced the drug resistance index of these cells. The T24/DDP cell line showed a high SIRT1 expression level. The overexpression of SIRT1 activated autophagy, thereby further promoting cisplatin resistance in the T24/DDP cell line. Conversely, inhibiting autophagy counteracted the cisplatin-resistance-promoting effects of SIRT1. Silencing SIRT1 led to increased acetylation of Beclin1, the inhibition of autophagy, and a reduction in the cisplatin resistance of the T24/DDP cell line. Introducing a double mutation (lysine 430 and 437 to arginine, 2KR) in Beclin-1 inhibited acetylation and activated autophagy, effectively reversing the decreased cisplatin resistance resulting from SIRT1 silencing. In summary, our study elucidated that SIRT1 promotes cisplatin resistance in human bladder cancer T24 cells through Beclin1-deacetylation-mediated autophagy activation. These findings suggest a potential new strategy for reversing cisplatin resistance in bladder cancer.

Keywords: SIRT1; autophagy; bladder cancer; cisplatin resistance; deacetylation.