A nickel-catalyzed reductive cross-coupling of redox active N-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in the pharmaceutical sciences. The reaction exhibits a broad scope, and many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents. Mechanistic studies reveal that reduction and decarboxylation of the NHP ester to the reactive radical intermediate are accomplished by a combination of a chlorosilane additive and Zn dust. We demonstrate that stoichiometric chlorosilane is essential for product formation and that chlorosilane plays a role beyond activation of the metal reductant.