Crop DNA extraction with lab-made magnetic nanoparticles

PLoS One. 2024 Jan 8;19(1):e0296847. doi: 10.1371/journal.pone.0296847. eCollection 2024.

Abstract

Molecular breeding methods, such as marker-assisted selection and genomic selection, require high-throughput and cost-effective methods for isolating genomic DNA from plants, specifically from crop tissue or seed with high polysaccharides, lipids, and proteins. A quick and inexpensive high-throughput method for isolating genomic DNA from seed and leaf tissue from multiple crops was tested with a DNA isolation method that combines CTAB extraction buffer and lab-made SA-coated magnetic nanoparticles. This method is capable of isolating quality genomic DNA from leaf tissue and seeds in less than 2 hours with fewer steps than a standard CTAB extraction method. The yield of the genomic DNA was 582-729 ng per 5 leaf discs or 216-1869 ng per seed in soybean, 2.92-62.6 ng per 5 leaf discs or 78.9-219 ng per seed in wheat, and 30.9-35.4 ng per 5 leaf discs in maize. The isolated DNA was tested with multiple molecular breeding methods and was found to be of sufficient quality and quantity for PCR and targeted genotyping by sequencing methods such as molecular inversion probes (MIPs). The combination of SA-coated magnetic nanoparticles and CTAB extraction buffer is a fast, simple, and environmentally friendly, high-throughput method for both leaf tissues and seed(s) DNA preparation at low cost per sample. The DNA obtained from this method can be deployed in applied breeding programs for marker-assisted selection or genomic selection.

MeSH terms

  • Cetrimonium
  • Chromosome Inversion
  • Magnetite Nanoparticles*
  • Molecular Probes
  • Plant Breeding
  • Seeds / genetics

Substances

  • Cetrimonium
  • Magnetite Nanoparticles
  • Molecular Probes

Grants and funding

DH received funding from the North Central Soybean Research Program project: Increasing the Rate of Genetic Gain for Yield in Soybean Breeding Programs https://ncsrp.com/. This work was completed using the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative. The funders did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.