The primary aim of the present in vitro study is to analyze the chemical content of the bubbles occurring during the fragmentation of cystine stones with both the high-power and low-power holmium:YAG (Ho:YAG) lasers. The secondary aim is to discuss their clinical importance. Three types of human renal calculi calcium oxalate monohydrate (COM), cystine, and uric acid were fragmented with both low-power and high-power Ho:YAG lasers in separate experimental setups at room temperature, during which time it was observed whether gas was produced. After laser lithotripsy, a cloudy white gas was obtained, after the fragmentation of cystine stones only. A qualitative gas content analysis was performed with a gas chromatography-mass spectrometry (GC-MS) device. The fragments in the aqueous cystine calculi setup were dried and taken to the laboratory to be examined by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction analysis. No gas production was observed after fragmentation in the COM and uric acid stones. Free cystine, sulfur, thiophene, and hydrogen sulfide gas were produced by both low-power and high-power Ho:YAG laser lithotripsy of the cystine stones. In the SEM-EDX mapping analysis, a free cystine molecule containing 42.8% sulfur (S), 21% oxygen (O), 14.9% carbon (C), and 21% nitrogen (N) atoms was detected in the cystine stone experimental setup. The evidence obtained, which shows that hydrogen sulfide emerges in the gaseous environment during Ho:YAG laser fragmentation of cystine stones, indicates that caution is required to prevent the risk of in vivo production and toxicity.
Keywords: Chemical decomposition; Chromatographic analysis; Cystine stone; Holmium:YAG laser; Photothermal ablative mechanism; Toxicity.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.