Computed tomography (CT) and magnetic resonance imaging (MRI) provide key structural information on brain pathophysiology. Positron emission tomography (PET) measures metabolism in the living brain; it plays an important role in molecular neuroimaging and is rapidly expanding its field of application to the study of neurodegenerative diseases. Different PET radiopharmaceuticals allow in vivo characterization and quantization of biological processes at the molecular and cellular levels, from which many neurodegenerative diseases develop. In addition, hybrid imaging tools such as PET/CT and PET/MRI support the utility of PET, enabling the anatomical mapping of functional data. In this overview, we describe the most commonly used PET tracers in the diagnostic work-up of patients with Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. We also briefly discuss the pathophysiological processes of tracer uptake in the brain, detailing their specific cellular pathways in clinical cases. This overview is limited to imaging agents already applied in human subjects, with particular emphasis on those tracers used in our department.
Keywords: MRI; PET; [18F]FDG; [18F]FDOPA; amyloid imaging; molecular imaging; neurodegenerative diseases; tau protein.
© 2023 The Author(s). Published by IMR Press.