The wound of diabetes has long-term excessive inflammation leading to wound fibrosis and scar formation. In the process of diabetic wound healing, good wound dressing is required for intervention. In this study, we designed a dihydromyricetin-loaded hydrogel (PCD) based on phellinus igniarius polysaccharide and l-arginine modified chitosan as an alternative material to promote diabetes wound healing. PCD had a uniform porous structure, good thermal stability, excellent mechanical properties, high water absorption, excellent antioxidant and anti-inflammatory activities and good biocompatibility and biodegradability. In addition, in the full-thickness skin trauma model of diabetes, PCD significantly inhibited the JNK signaling pathway to reduce inflammatory response, and significantly down-regulated the expression of TGF-β1, Smad2, Smad3 and Smad4 to directly inhibit the TGF-β/Smad signaling pathway to accelerate wound healing and slow down scar formation in diabetes mice. Therefore, PCD has a broad application prospect in promoting diabetes wound healing.
Keywords: Diabetic wound healing; Dihydromyricetin; Hydrogel; JNK; Scar; TGF-β/Smad.
Copyright © 2024 Elsevier B.V. All rights reserved.