Simultaneous and site-specific profiling of heterogeneity and turnover in protein S-acylation by intact S-acylated peptide analysis with a cleavable bioorthogonal tag

Analyst. 2024 Feb 12;149(4):1111-1120. doi: 10.1039/d3an02059b.

Abstract

Protein S-acylation is an important lipid modification characteristic for heterogeneity in the acyl chain and dynamicity in the acylation/deacylation cycle. Most S-acylproteomic research has been limited by indirect identification of modified proteins/peptides without attached fatty acids, resulting in the failure to precisely characterize S-acylated sites with attached fatty acids. The study of S-acylation turnover is still limited at the protein level. Herein, aiming to site-specifically profile both the heterogeneity and the turnover of S-acylation, we first developed a site-specific strategy for intact S-acylated peptide analysis by introducing an acid cleavable bioorthogonal tag into a metabolic labelling method (ssMLCC). The cleavable bioorthogonal tag allowed for the selective enrichment and efficient MS analysis of intact S-acylated peptides so that S-acylated sites and their attached fatty acids could be directly analysed, enabling the precise mapping of S-acylated sites, as well as circumventing false positives from previous studies. Moreover, 606 S-palmitoylated (C16:0) sites of 441 proteins in HeLa cells were identified. All types of S-acylated peptides were further characterized by an open search, providing site-specific profiling of acyl chain heterogeneity, including S-myristoylation, S-palmitoylation, S-palmitoleylation, and S-oleylation. Furthermore, site-specific monitoring of S-palmitoylation turnover was achieved by coupling with pulse-chase methods, facilitating the detailed observation of the dynamic event at each site in multi-palmitoylated proteins, and 85 rapidly cycling palmitoylated sites in 79 proteins were identified. This study provided a strategy for the precise and comprehensive analysis of protein S-acylation based on intact S-acylated peptide analysis, contributing to the further understanding of its complexity and biological functions.

MeSH terms

  • Acylation
  • Fatty Acids* / metabolism
  • HeLa Cells
  • Humans
  • Peptides / metabolism
  • Proteins* / metabolism

Substances

  • Proteins
  • Fatty Acids
  • Peptides