Pulmonary fibrosis (PF) is a horrible lung disease that causes pulmonary ventilation dysfunction and respiratory failure, severely impacting sufferers' physical and mental health. Existing drugs can only partially control the condition and are prone to toxic side effects. Anti-inflammatory treatment is the committed step to alleviate PF. Celastrol (CLT) has significant anti-inflammatory effects and can reverse M1-type transformation of macrophages. In this study, we have developed liposomes loaded with CLT, modified with folate (FA), designated FA-CLT-Lips, which facilitate drug delivery by targeting macrophages. FA-CLT-Lips were shown to be more readily absorbed by macrophages in vitro and to encourage the transition of M1 macrophages into M2 macrophages. In addition, FA-CLT-Lips can inhibit the phosphorylation of Smad2/3, effectively reducing the deposition of extracellular matrix (ECM) and the production of inflammatory factors. This showed that FA-CLT-Lips can ameliorate early lung fibrosis by lowering inflammation. In vivo studies have shown that FA-CLT-Lips accumulate in lung tissue to better attenuate lung injury and collagen deposition, with less toxicity compared to free CLT. In summary, FA receptor-targeting liposomes loaded with CLT provide a secure and reliable PF therapy.
Keywords: Celastrol; Folic acid; Liposomes; Macrophage-targeted; Pulmonary fibrosis.
© 2024. Controlled Release Society.