Topological data analysis (TDA) combined with machine learning (ML) algorithms is a powerful approach for investigating complex brain interaction patterns in neurological disorders such as epilepsy. However, the use of ML algorithms and TDA for analysis of aberrant brain interactions requires substantial domain knowledge in computing as well as pure mathematics. To lower the threshold for clinical and computational neuroscience researchers to effectively use ML algorithms together with TDA to study neurological disorders, we introduce an integrated web platform called MaTiLDA. MaTiLDA is the first tool that enables users to intuitively use TDA methods together with ML models to characterize interaction patterns derived from neurophysiological signal data such as electroencephalogram (EEG) recorded during routine clinical practice. MaTiLDA features support for TDA methods, such as persistent homology, that enable classification of signal data using ML models to provide insights into complex brain interaction patterns in neurological disorders. We demonstrate the practical use of MaTiLDA by analyzing high-resolution intracranial EEG from refractory epilepsy patients to characterize the distinct phases of seizure propagation to different brain regions. The MaTiLDA platform is available at: https://bmhinformatics.case.edu/nicworkflow/MaTiLDA.