High-resolution myelin-water fraction and quantitative relaxation mapping using 3D ViSTa-MR fingerprinting

Magn Reson Med. 2024 Jun;91(6):2278-2293. doi: 10.1002/mrm.29990. Epub 2023 Dec 29.

Abstract

Purpose: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time.

Methods: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors.

Results: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples.

Conclusions: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.

Keywords: high resolution; myelin‐water fraction; quantitative MRI.

MeSH terms

  • Brain / diagnostic imaging
  • Brain Mapping / methods
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods
  • Myelin Sheath*
  • Phantoms, Imaging
  • Water*

Substances

  • Water