2,6-diaminopurine (Z), a naturally occurring noncanonical nucleotide base found in bacteriophages, enhances DNA hybridization by forming three hydrogen bonds with thymine (T). These distinct biochemical characteristics make it particularly valuable in applications that rely on the thermodynamics of DNA hybridization. However, the practical use of Z-containing oligos is limited by their high production cost and the challenges associated with their synthesis. Here, we developed an efficient and cost-effective approach to synthesize Z-containing oligos of high quality based on an isothermal strand displacement reaction. These newly synthesized Z-oligos are then employed as toehold-blockers in an isothermal genotyping assay designed to detect rare single nucleotide variations (SNV). When compared with their counterparts containing the standard adenine (A) base, the Z-containing blockers significantly enhance the accuracy of identifying SNV. Overall, our innovative methodology in the synthesis of Z-containing oligos, which can also be used to incorporate other unconventional and unnatural bases into oligonucleotides, is anticipated to be adopted for diverse applications, including genotyping, biosensing, and gene therapy.
Keywords: 2,6‐diaminopurine; DNA synthesis; genotyping; toehold‐mediated strand displacement.
© 2023 Wiley Periodicals LLC.