Aged microplastics (MPs) in the environment are a growing concern due to their higher ecological toxicity compared to pristine MPs. While previous studies have explored aging behaviors of MPs under various stress conditions, little is known about their aging during food processing. In this study, we investigated the effects of different thermal food processing methods on the aging of polystyrene (PS) MPs within mussels. We subjected the mussels containing PS MPs to boiling, boiling/solar drying, boiling/hot air drying, and boiling/microwave drying treatments, all of which are common preservation methods used in industry. We analyzed the particle size, surface morphology, yellowing, crystallinity, chemical groups, and hydrophilicity of the PS MPs to understand the aging process. Results show that all processing methods led to aging of PS MPs, with boiling/microwave drying having the most significant impact, followed by boiling/hot air drying, boiling/solar drying, and boiling alone. The aged PS MPs exhibited smaller size, morphological changes, reduced crystallinity, increased yellowness index and carbonyl index, higher presence of O-containing groups, and enhanced hydrophilicity. These findings provide evidence of MPs aging during thermal food processing and emphasize the potential risks associated with this pathway.
Keywords: Aging behaviors; Food; Microplastics; Physicochemical properties; Thermal processing.
Copyright © 2023 Elsevier B.V. All rights reserved.