Internal Heavy-Atom Effect on Visible-Light-Induced Cyclization Reaction in Diarylethene-Perylenebisimide Dyads

J Phys Chem B. 2024 Jan 11;128(1):273-279. doi: 10.1021/acs.jpcb.3c06746. Epub 2023 Dec 20.

Abstract

All-visible-light switchable diarylethene-perylenebisimide (DAE-PBI) dyads having bromine heavy atoms in the molecule were designed and synthesized. Very recently, we found a unique visible-light-induced cyclization reaction in a DAE-PBI dyad. The dyad exhibited reversible cyclization and cycloreversion reactions upon alternate irradiation with green (500-550 nm) and red (>600 nm) light. From the experimental results, it was suggested that the triplet state of DAE unit was generated via multiplicity conversion based on intramolecular energy transfer from the singlet excited state of PBI unit and that the cyclization reaction of DAE unit proceeded from the triplet state. In addition, it was revealed that the reactivity remarkably increased in a solvent containing heavy atoms such as carbon tetrachloride and iodoethane (i.e., external heavy-atom effect). Based on such results, in this study, we attempted to design and synthesize novel DAE-PBI dyads introducing bromine heavy atoms at different positions in the molecule. The synthesized dyads exhibited higher quantum yields of photocyclization reaction under visible-light irradiation even in a heavy-atom-free solvent compared to the previous dyad having no heavy atoms. The magnitude of enhancement well correlated to the contribution ratio of atomic orbital of bromine to the molecular orbital in LUMOs. These results indicated that the internal heavy atom effectively contributed to the visible-light-induced cyclization reaction in DAE-PBI dyads. Such an internal heavy-atom effect will pave the way for new molecular design to develop all-visible-light-activatable molecular switches.