Objective: Anorexia nervosa (AN), a severe psychiatric disorder primarily affecting adolescents and young adults, is characterized by extreme dietary restriction and distorted body image. While the psychological aspects of AN are well-documented, its intricate metabolic underpinnings remain less explored. We think that metabolomic analysis of hair samples emerges as a promising tool to unveil the complex physiological alterations in AN. This study aims to comprehensively profile amino acid concentrations in hair samples from AN patients and healthy controls. Additionally, it seeks to elucidate potential correlations between amino acid alterations and appetite dysregulation in AN, thereby shedding light on the physiological basis of this debilitating disorder.
Patients and methods: A total of 25 AN patients and 25 age-matched healthy controls were recruited for this study. Hair samples were collected, and metabolites were extracted and analyzed using high-resolution liquid chromatography-mass spectrometry. Clinical data and biochemical markers were also gathered to characterize participants' demographic and clinical profiles.
Results: Metabolomic analysis revealed significant alterations in amino acid concentrations in AN patients compared to healthy controls. Notably, deficiencies in essential amino acids (EAAs) and branched-chain amino acids (BCAAs) were observed, highlighting potential contributors to muscle wasting and appetite dysregulation. Further analysis identified specific amino acids as robust biomarkers capable of distinguishing AN patients with high sensitivity and specificity.
Conclusions: This study unveils the complex metabolic disturbances associated with AN and underscores the role of amino acid dysregulation in the disorder's pathophysiology. The identified biomarkers hold promise for diagnostic screening and potential therapeutic interventions, opening avenues for personalized approaches in AN treatment. Ultimately, this research contributes to our understanding of chronic disorders through the lens of metabolomics and the chemosensory underpinnings of appetite regulation.