Many agrochemicals are chiral molecules, and most of them are marketed as racemates or diastereomeric mixtures. Stereoisomers that are not the active enantiomer have little or no pesticidal activity and can exert serious toxic effects towards non-target organisms. Thus, investigating the possible exposure to different isomers of chiral pesticides is an urgent need. The present work was aimed at developing a new enantioselective high-performance liquid chromatography-mass spectrometry method for the simultaneous determination of nine chiral pesticides in urine. Two solid-phase extraction (SPE) procedures, based on different carbon-based sorbents (graphitized carbon black (GCB) and buckypaper (BP)), were developed and compared. By using GCB, all analytes were recovered with yields ranging from 60 to 97%, while BP allowed recoveries greater than 54% for all pesticides except those with acid characteristics. Baseline separation was achieved for the enantiomers of all target agrochemicals on a Lux Cellulose-2 column within 24 min under reversed-phase mode. The developed method was then validated according to the FDA guidelines for bioanalytical methods. Besides recovery, the other evaluated parameters were precision (7-15%), limits of detection (0.26-2.21 µg/L), lower limits of quantitation (0.43-3.68 µg/L), linear dynamic range, and sensitivity. Finally, the validated method was applied to verify the occurrence of the pesticide enantiomers in urine samples from occupationally exposed workers.
Keywords: Carbon-based sorbents; Chiral pesticides; Enantioselective separations; HPLC–MS/MS; Solid-phase extraction; Urine.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.