Characterisation of a Novel Hybrid IncFIIpHN7A8:IncR:IncN Plasmid Co-Harboring blaNDM-5 and blaKPC-2 from a Clinical ST11 Carbapenem-Resistant Klebsiella pneumoniae Strain

Infect Drug Resist. 2023 Dec 12:16:7621-7628. doi: 10.2147/IDR.S435195. eCollection 2023.

Abstract

Purpose: We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain.

Methods: Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods.

Results: Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid.

Conclusion: This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.

Keywords: IS26; Klebsiella pneumoniae; blaKPC-2; blaNDM-5; hybrid plasmid.

Grants and funding

This work was supported by grants from the National Natural Science Foundation of China (grant numbers: 82002169, 81830069, and 32141001).