Helicobacter pylori (H. pylori) infection presents increasing challenges to antibiotic therapies in limited penetration through gastric mucus, multi-drug resistance (MDR), biofilm formation, and intestinal microflora dysbiosis. To address these problems, herein, a mucus-penetrating phototherapeutic nanomedicine (RLs@T780TG) against MDR H. pylori infection is engineered. The RLs@T780TG is assembled with a near-infrared photosensitizer T780T-Gu and an anionic component rhamnolipids (RLs) for deep mucus penetration and light-induced anti-H. pylori performances. With optimized suitable size, hydrophilicity and weak negative surface, the RLs@T780TG can effectively penetrate through the gastric mucus layer and target the inflammatory site. Subsequently, under irradiation, the structure of RLs@T780TG is disrupted and facilitates the T780T-Gu releasing to target the H. pylori surface and ablate multi-drug resistant (MDR) H. pylori. In vivo, RLs@T780TG phototherapy exhibits impressive eradication against H. pylori. The gastric lesions are significantly alleviated and intestinal bacteria balance is less affected than antibiotic treatment. Summarily, this work provides a potential nanomedicine design to facilitate in vivo phototherapy in treatment of H. pylori infection.
Keywords: Helicobacter pylori; PDT; PTT; mucus penetration; targeted delivery.
© 2023 Wiley‐VCH GmbH.