Real-time imaging of laser materials processing can be challenging as the laser generated plasma can prevent direct observation of the sample. However, the spatial structure of the generated plasma is strongly dependent on the surface profile of the sample, and therefore can be interrogated to indirectly provide an image of the sample. In this study, we demonstrate that deep learning can be used to predict the appearance of the surface of silicon before and after the laser pulse, in real-time, when being machined by single femtosecond pulses, directly from camera images of the generated plasma. This demonstration has immediate impact for real-time feedback and monitoring of laser materials processing where direct observation of the sample is not possible.