Improper disposal of waste oils containing hazardous components damages the environment and the ecosystem, posing a significant threat to human life and health. Here, we present a method of discharge-assisted laser-induced breakdown spectroscopy combined with filter paper sampling (DA-LIBS-FPS) to detect hazardous components and trace the source of polluting elements. DA-LIBS-FPS significantly enhances spectral intensity by 1-2 orders of magnitude due to the discharge energy deposition into the laser-induced plasma and the highly efficient laser-sample interaction on the filter paper, when compared to single-pulse LIBS with silica wafer sampling (SP-LIBS-SWS). Additionally, the signal-to-noise ratio and the signal-to-background ratio are both significantly increased. Resultantly, indiscernible lines, such as CN and Cr I, are well distinguished. In contrast with DA-LIBS combined with silica wafer sampling (DA-LIBS-SWS), the spectral signal fluctuations in DA-LIBS-FPS are reduced by up to 33%, because of the homogeneous distribution of the oil layer on the filter paper in FPS. Further examination indicates that the limit of detection for Ba is reduced from a several parts per million level in SP-LIBS-SWS to a dozens of parts per billion level in DA-LIBS-FPS, i.e., nearly 2 orders of magnitude enhancement in analysis sensitivity. This improvement is attributed to the extended plasma lifespan in DA-LIBS and the increasing electron density and plasma temperature in FPS. DA-LIBS-FPS provides a low-cost, handy, rapid, and highly sensitive avenue to analyze the hazardous components in waste oils with great potential in environmental and ecological monitoring.