Targeted design of synthetic enhancers for selected tissues in the Drosophila embryo

Nature. 2024 Feb;626(7997):207-211. doi: 10.1038/s41586-023-06905-9. Epub 2023 Dec 12.

Abstract

Enhancers control gene expression and have crucial roles in development and homeostasis1-3. However, the targeted de novo design of enhancers with tissue-specific activities has remained challenging. Here we combine deep learning and transfer learning to design tissue-specific enhancers for five tissues in the Drosophila melanogaster embryo: the central nervous system, epidermis, gut, muscle and brain. We first train convolutional neural networks using genome-wide single-cell assay for transposase-accessible chromatin with sequencing (ATAC-seq) datasets and then fine-tune the convolutional neural networks with smaller-scale data from in vivo enhancer activity assays, yielding models with 13% to 76% positive predictive value according to cross-validation. We designed and experimentally assessed 40 synthetic enhancers (8 per tissue) in vivo, of which 31 (78%) were active and 27 (68%) functioned in the target tissue (100% for central nervous system and muscle). The strategy of combining genome-wide and small-scale functional datasets by transfer learning is generally applicable and should enable the design of tissue-, cell type- and cell state-specific enhancers in any system.

MeSH terms

  • Animals
  • Chromatin / genetics
  • Chromatin / metabolism
  • Datasets as Topic
  • Deep Learning*
  • Drosophila melanogaster* / embryology
  • Drosophila melanogaster* / genetics
  • Embryo, Nonmammalian* / embryology
  • Embryo, Nonmammalian* / metabolism
  • Enhancer Elements, Genetic* / genetics
  • Neural Networks, Computer*
  • Organ Specificity* / genetics
  • Reproducibility of Results
  • Single-Cell Analysis
  • Synthetic Biology / methods
  • Transposases / metabolism

Substances

  • Chromatin
  • Transposases