Children with optic pathway gliomas (OPGs), a low-grade brain tumor associated with neurofibromatosis type 1 (NF1-OPG), are at risk for permanent vision loss. While OPG size has been associated with vision loss, it is unclear how changes in size, shape, and imaging features of OPGs are associated with the likelihood of vision loss. This paper presents a fully automatic framework for accurate prediction of visual acuity loss using multi-sequence magnetic resonance images (MRIs). Our proposed framework includes a transformer-based segmentation network using transfer learning, statistical analysis of radiomic features, and a machine learning method for predicting vision loss. Our segmentation network was evaluated on multi-sequence MRIs acquired from 75 pediatric subjects with NF1-OPG and obtained an average Dice similarity coefficient of 0.791. The ability to predict vision loss was evaluated on a subset of 25 subjects with ground truth using cross-validation and achieved an average accuracy of 0.8. Analyzing multiple MRI features appear to be good indicators of vision loss, potentially permitting early treatment decisions.Clinical relevance- Accurately determining which children with NF1-OPGs are at risk and hence require preventive treatment before vision loss remains challenging, towards this we present a fully automatic deep learning-based framework for vision outcome prediction, potentially permitting early treatment decisions.