The neuropeptide drosulfakinin enhances choosiness and protects males from the aging effects of social perception

Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2308305120. doi: 10.1073/pnas.2308305120. Epub 2023 Dec 11.

Abstract

The motivation to reproduce is a potent natural drive, and the social behaviors that induce it can severely impact animal health and lifespan. Indeed, in Drosophila males, accelerated aging associated with reproduction arises not from the physical act of courtship or copulation but instead from the motivational drive to court and mate. To better understand the mechanisms underlying social effects on aging, we studied male choosiness for mates. We found that increased activity of insulin-producing cells (IPCs) of the fly brain potentiated choosiness without consistently affecting courtship activity. Surprisingly, this effect was not caused by insulins themselves, but instead by drosulfakinin (DSK), another neuropeptide produced in a subset of the IPCs, acting through one of the two DSK receptors, CCKLR-17D1. Activation of Dsk+ IPC neurons also decreased food consumption, while activation of Dsk+ neurons outside of IPCs affected neither choosiness nor feeding, suggesting an overlap between Dsk+neurons modulating choosiness and those influencing satiety. Broader activation of Dsk+ neurons (both within and outside of the IPCs) was required to rescue the detrimental effect of female pheromone exposure on male lifespan, as was the function of both DSK receptors. The same broad set of Dsk+ neurons was found to reinforce normally aversive feeding interactions, but only after exposure to female pheromones, suggesting that perception of the opposite sex gates rewarding properties of these neurons. We speculate that broad Dsk+ neuron activation is associated with states of satiety and social experience, which under stressful conditions is rewarding and beneficial for lifespan.

Keywords: cholecystokinin; condition dependence; mate choice; reward.

MeSH terms

  • Aging
  • Animals
  • Drosophila
  • Drosophila Proteins* / genetics
  • Drosophila melanogaster / physiology
  • Female
  • Male
  • Neuropeptides* / chemistry
  • Sexual Behavior, Animal / physiology
  • Social Perception

Substances

  • Drosophila Proteins
  • Neuropeptides