Biogenic Synthesis of Nanoparticles from the Edible Plant Polygonum microcephalum for Use in Antimicrobial Fabric

ACS Omega. 2023 Nov 22;8(48):45301-45312. doi: 10.1021/acsomega.3c03978. eCollection 2023 Dec 5.

Abstract

With increasing demand of the public toward antimicrobial textiles, there should be the proper fabrication of such types of clothes, and it is possible with biogenically synthesized metal nanoparticles (NPs). It is necessary to find cheap and eco-friendly resources for such synthesis. In this work, we used Polygonum microcephalum from Assam, India, to synthesize copper and silver (Ag) NPs. As far as we know, this is the first report on the synthesis of AgNPs and copper oxide NPs (CuONPs) from P. microcephalum The synthesis was done from the aqueous leaf extract. The AgNPs and CuONPs formation was observed by the change in the color of the solution and was confirmed by UV-visible spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Characterization of NPs was done with various physicochemical characterization techniques. The synthesized spherical-shaped AgNPs were found to be effective against the representative bacteria, Gram +ve (Staphylococcus Aureus) and Gram -ve (Escherichia Coli and Pseudomonas Aeruginosa), but the flake-shaped CuONPs were not effective due to their bigger size (>200 nm). The results clearly show that the AgNPs used in this study were toxic against three pathogens. The minimum inhibitory concentrations of AgNPs for S. aureus and E. coli were 32 μg/mL. The uptake analysis of AgNPs for both pathogens demonstrates the mechanism of toxic effects. The present study confirms that P. microcephalum leaf extract is effective in AgNP synthesis, and it could be a cost-effective and environmentally friendly resource for the green synthesis of AgNPs.