Groundwater, the main freshwater resource for humans, has been widely contaminated with nitrate from fertilizers. Here, we report a new and chemical-free strategy to prevent nitrate leaching from soil based on the enrichment of electroactive bacteria, mainly of the genus Geobacter, with bioelectro-barriers, which leads to a nearly 100 % interception of nitrate and partly conserves reactive nitrogen in the form of weakly mobile ammonium by dissimilatory nitrate reduction to ammonium (DNRA). G. sulfurreducens was recognized to efficiently secrete nitrite reductase (NrfA) for rapid DNRA because it lacks nitrate reductase, which inhibits DNRA by competing with nitrite and producing toxic intracellular nitric oxide. With an increase in G. sulfurreducens abundance, near-zero nitrate leaching and 3-fold greater N retention was achieved. Periodic application of weak electricity to the bioelectro-barrier ensured the dominance of G. sulfurreducens in the microbial community and therefore its ability to consistently prevent nitrate leaching. The ability of G. sulfurreducens to intercept nitrate was further demonstrated in more diverse agricultural soils, providing a novel way to prevent nitrate leaching and conserve bioavailable nitrogen in the soil, which has broader implications for both sustainable agriculture and groundwater protection.
Keywords: Bioelectro-barrier; Geobacter; Microbial electrochemical system; Nitrate leaching.
Copyright © 2023 Elsevier Ltd. All rights reserved.