Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating adverse effect of taxane therapy. Small non-randomized studies in patients with early-stage breast cancer (ESBC) suggest both cryotherapy and compression therapy may prevent CIPN. It is unknown which is more effective.
Methods: We conducted a randomized phase IIB adaptive sequential selection trial of cryotherapy vs. compression therapy vs. placebo ("loose" gloves/socks) during taxane chemotherapy. Participants were randomized in triplets. Garments were worn for 90-120 min, beginning 15 min prior and continuing for 15 min following the infusion. The primary goal was to select the best intervention based on a Levin-Robbins-Leu sequential selection procedure. The primary endpoint was a < 5-point decrease in the Functional Assessment of Cancer Therapy Neurotoxicity (FACT-NTX) at 12 weeks. An arm was eliminated if it had four or more fewer successes than the currently leading arm. Secondary endpoints included intervention adherence and patient-reported comfort/satisfaction.
Results: Between April 2019 and April 2021, 63 patients were randomized (cryotherapy (20); compression (22); placebo (21)). Most patients (60.3%) were treated with docetaxel. The stopping criterion was met after the 17th triplet (n = 51) was evaluated; success at 12 weeks occurred in 11 (64.7%) on compression therapy, 7 (41.1%) on cryotherapy, and 7 (41.1%) on placebo. Adherence to the intervention was lowest with cryotherapy (35.0%) compared to compression (72.7%) and placebo (76.2%).
Conclusion: Compression therapy was the most effective intervention in this phase IIB selection trial to prevent CIPN and was well tolerated. Compression therapy for the prevention of CIPN should be evaluated in a phase III study.
Clinical trial registration: ClinicaTrials.gov Identifier: NCT03873272.
Keywords: Chemotherapy-induced peripheral neuropathy; Compression therapy; Cryotherapy; Taxane chemotherapy.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.