Metavalent or Hypervalent Bonding: Is There a Chance for Reconciliation?

Adv Sci (Weinh). 2024 Feb;11(6):e2308578. doi: 10.1002/advs.202308578. Epub 2023 Dec 7.

Abstract

A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.

Keywords: hypervalent bonding; material design; material maps; metavalent bonding; quantum chemical bonding descriptors.