An intelligent and active food packaging film based on chitosan (CS), pectin (P), calcium propionate (CP), and curcumin-β-cyclodextrin complex (Cur-β-CD) was prepared. The CS/P/CP/Cur-β-CD film exhibited improved hydrophobicity (74.78 ± 0.53°), water vapor (4.55 ± 0.16 × 10-11 g·(m·s·Pa)-1), and oxygen (1.50 ± 0.06 × 10-12 g·(m·s·Pa)-1) barrier properties, as well as antioxidant (72.34 ± 3.79 % for DPPH and 86.05 ± 0.14 % for ABTS) and antibacterial (79.41 ± 2.89 % for E. coli and 83.82 ± 3.96 % for S. aureus) activities. The release of CP and Cur could be triggered by pectinase, with their cumulative release reaching 92.62 ± 1.20 % and 42.24 ± 1.15 %, respectively. The CS/P/CP/Cur-β-CD film showed delayed alterations in surface color, pH value, total volatile bases nitrogen, total viable counts, thiobarbituric acid reactive substance, hardness, and springiness of pork. Additionally, the fluorescence intensity of the film gradually decreased. In conclusion, we have developed a pH-responsive film with pectinase-triggered release function, providing a new concept for the design of multi-signal responsive intelligent food packaging.
Keywords: Film; Intelligent active packaging; Meat spoilage; Pectinase-triggered release; pH-fluorescence response.
Copyright © 2023. Published by Elsevier B.V.