Exploring Life History Choices: Using Temperature and Substrate Type as Interacting Factors for Blowfly Larval and Female Preferences

J Vis Exp. 2023 Nov 17:(201). doi: 10.3791/65835.

Abstract

Blowflies (Diptera: Calliphoridae) present a wide range of larval lifestyles, typically classified as obligate parasitism, facultative parasitism, and complete sapro-necrophagy. Several parasitic species, both obligate and facultative, are considered to be of sanitary and economic importance, as their larvae can cause myiasis (maggot infestation in live tissue). However, it is noteworthy that the adult female plays a decisive role as she chooses the oviposition site, and, therefore, largely determines the feeding habit and developmental conditions of the larvae. In this study, two protocols are proposed to test larval feeding preference and female oviposition site preference considering two interacting factors: meat substrate type and temperature. The setups presented here allowed to test Lucilia cuprina larvae and gravid females in a four-choice assay with two temperatures (33 ± 2 °C and 25 ± 2 °C) and two types of meat substrates (fresh meat supplemented with blood and 5-day-old rotten meat). Larvae or gravid females can choose to burrow or lay their eggs, respectively, in either of the following: rotten meat at 25 °C (simulating a necrophagous species condition), fresh meat supplemented with blood at 33 °C (simulating a parasitic species condition), and two controls, rotten meat at 33 °C, or fresh meat supplemented with blood at 25 °C. The preference is assessed by counting the number of larvae or eggs laid in each option for each replicate. Comparing the observed results to a random distribution allowed for the estimation of the statistical significance of the preference. The results indicated that L. cuprina larvae have a strong preference for the rotten substrate at 25 °C. Conversely, oviposition-site preference by females was more varied for the meat type. This methodology can be adapted to test the preference of other insect species of similar size. Other questions can also be explored by using alternative conditions.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Calliphoridae*
  • Diptera*
  • Female
  • Larva
  • Oviposition
  • Temperature