Introduction: Metformin (MF) intake could be associated with a favorable outcome in sunitinib (SUT)- and axitinib (AX)-treated clear cell renal cell carcinoma (ccRCC) patients. Functionally, MF induces miR-205, a microRNA serving as a tumor suppressor in several cancers.
Methods: Real-time quantitative PCR, viability assays, and Western blotting analyzed MF and SUT/AX effects in RCC4 and 786-O cells. A tetracycline-inducible overexpression model was used to study the role of miR-205 and its known target gene, VEGFA. We analyzed miR-205 and VEGFA within a public and an in-house ccRCC cohort. Human umbilical vein endothelial cell (HUVEC) sprouting assays examined miR-205 effects on angiogenesis initiation. To determine the influence of the von Hippel-Lindau tumor suppressor (VHL), we examined VHLwt reexpressing RCC4 and 786-O cells.
Results: Viability assays confirmed a sensitizing effect of MF toward SUT/AX in RCC4 and 786-O cells. Overexpression of miR-205 diminished VEGFA expression - as did treatment with MF. Tumor tissue displayed a downregulation of miR-205 and an upregulation of VEGFA. Accordingly, miR-205 caused less and shorter vessel sprouts in HUVEC assays. Finally, VHLwt-expressing RCC4 and 786-O cells displayed higher miR-205 and lower VEGFA levels.
Conclusion: Our results support the protective role of MF in ccRCC and offer functional insights into the clinical synergism with tyrosine kinase inhibitors.
Keywords: Angiogenesis; Kidney cancer; Metformin; MicroRNA; Tyrosine kinase inhibitor.
© 2023 The Author(s). Published by S. Karger AG, Basel.