Laser-Ironing Induced Capping Layer on Co-ZIF-L Promoting In Situ Surface Modification to High-Spin Oxide-Carbon Hybrids on the "Real Catalyst" for High OER Activity and Stability

Adv Mater. 2024 Feb;36(8):e2310106. doi: 10.1002/adma.202310106. Epub 2023 Dec 8.

Abstract

Enhancing electrocatalytic performance through structural and compositional engineering attracts considerable attention. However, most materials only function as pre-catalysts and convert into "real catalysts" during electrochemical reactions. Such transition involves dramatic structural and compositional changes and disrupts their designed properties. Herein, for the first time, a laser-ironing (LI) approach capable of in-situ forming a laser-ironing capping layer (LICL) on the Co-ZIF-L flakes is developed. During the oxygen evolution reaction (OER) process, the LICL sustains the leaf-like morphology and promotes the formation of OER-active Co3 O4 nanoclusters with the highest activity and stability. In contrast, the pristine and conventional heat-treated Co-ZIF-Ls both collapse and transform to less active CoOOH. The density functional theory (DFT) calculations pinpoint the importance of the high spin (HS) states of Co ions and the narrowed band gap in Co3 O4 nanoclusters. They enhance the OER activity by promoting spin-selected electron transport, effectively lowering the energy barrier and realizing a spontaneous O2 -releasing step that is the potential determining step (pds) in CoOOH. This study presents an innovative approach for modulating both structural and compositional evolutions of electrocatalysts during the reaction, sustaining stability with high performance during dynamic electrochemical reactions, and providing new pathways for facile and high-precision surface microstructure control.

Keywords: high spin state; laser-ironing; metal-organic framework; oxygen evolution reaction; surface engineering.