Antibiotic detection is crucial and challenging because the widespread consumption of antibiotics has shown extensive harmful effects on food, environment and human health. Here, we propose highly water-soluble and biocompatible hyaluronic acid (HYA) functionalized upconversion nanoparticles (UCNPs) for ratiometric detection of multiple antibiotics. The ultraviolet upconversion luminescence (UCL) from UCNPs was significantly quenched by nitrofurazone (NFZ)/nitrofurantoin (NFT), and blue UCL was quenched by doxorubicin (DOX), while red UCL remained unchanged for internal reference. The UCNPs-HYA nanoprobes exhibit excellently sensitive and selective NFZ, NFT and DOX detection in linear range of 2.5-100 μM, 2.5-80 μM, and 2.5-200 μM with the LOD at 0.28 μM (55 μg/kg), 0.20 μM (48 μg/kg) and 0.17 μM (97 μg/kg), respectively. The nanoprobes achieved detecting real samples of NFZ in lake water, liquid milk and chicken meat with satisfactory results, and UCL bioimaging of DOX in HeLa cells. The UCNPs-HYA ratiometric nanoprobes are promising for food samples detection and potential biosensing in the cellular environment.
Keywords: Antibiotics; Förster resonant energy transfer; Hyaluronic acid; Inner filter effect; Ratiometric nanoprobe; Upconversion nanoparticles.
Copyright © 2023 Elsevier Ltd. All rights reserved.