A Comparative Assessment of Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing, and Left Bundle Branch Area Pacing: Insights from the EMPATHY Study

J Cardiovasc Dev Dis. 2023 Oct 27;10(11):444. doi: 10.3390/jcdd10110444.

Abstract

Background: Physiological pacing has gained significant interest due to its potential to achieve optimal hemodynamic response. This study aimed to assess left ventricular performance in terms of electrical parameters, specifically QRS duration and mechanical performance, evaluated as myocardial work. We compared His Bundle Pacing (HBP) and Left Bundle Branch Area Pacing (LBBAP) to evaluate their effects.

Methods: Twenty-four patients with class I or IIa indications for pacing were enrolled in this study, with twelve patients undergoing HBP implantation and another twelve undergoing LBBAP implantation. A comprehensive analysis of myocardial work was conducted.

Results: Our findings indicate that there were no major differences in terms of spontaneous and HBP activation in myocardial work, except for global wasted work (217 mmHg% vs. 283 mmHg%; p 0.016) and global work efficiency (87 mmHg% vs. 82 mmHg%; p 0.049). No significant differences were observed in myocardial work between spontaneous activation and LBBAP. Similarly, no significant differences in myocardial work were found between HBP and LBBAP.

Conclusions: Both pacing modalities provide physiological ventricular activation without significant differences when compared to each other. Moreover, there were no significant differences in QRS duration between HBP and LBBAP. However, LBBAP demonstrated advantages in terms of feasibility, as it achieved better lead electrical parameters compared to HBP (threshold@0.4 ms 0.6 V vs. 1 V; p = 0.045-sensing 9.4 mV vs. 2.4 mV; p < 0.001). Additionally, LBBAP required less fluoroscopy time (6 min vs. 13 min; p = 0.010) and procedural time (81 min vs. 125 min; p = 0.004) compared to HBP.

Keywords: conduction system pacing; his bundle pacing; left bundle branch area pacing; physiological pacing.

Grants and funding

This research received no external funding.