In this chapter, we present the main classic machine learning methods. A large part of the chapter is devoted to supervised learning techniques for classification and regression, including nearest neighbor methods, linear and logistic regressions, support vector machines, and tree-based algorithms. We also describe the problem of overfitting as well as strategies to overcome it. We finally provide a brief overview of unsupervised learning methods, namely, for clustering and dimensionality reduction. The chapter does not cover neural networks and deep learning as these will be presented in Chaps.
Copyright 2023, The Author(s).