We investigate how randomly oriented cell traction forces lead to fluidization in a vertex model of epithelial tissues. We find that the fluidization occurs at a critical value of the traction force magnitude F_{c}. We show that this transition exhibits critical behavior, similar to the yielding transition of sheared amorphous solids. However, we find that it belongs to a different universality class, even though it satisfies the same scaling relations between critical exponents established in the yielding transition of sheared amorphous solids. Our work provides a fluidization mechanism through active force generation that could be relevant in biological tissues.