Pulmonary endothelium-targeted nanoassembly of indomethacin and superoxide dismutase relieves lung inflammation

Acta Pharm Sin B. 2023 Nov;13(11):4607-4620. doi: 10.1016/j.apsb.2023.05.024. Epub 2023 May 26.

Abstract

Lung inflammation is an essential inducer of various diseases and is closely related to pulmonary-endothelium dysfunction. Herein, we propose a pulmonary endothelium-targeted codelivery system of anti-inflammatory indomethacin (IND) and antioxidant superoxide dismutase (SOD) by assembling the biopharmaceutical SOD onto the "vector" of rod-like pure IND crystals, followed by coating with anti-ICAM-1 antibody (Ab) for targeting endothelial cells. The codelivery system has a 237 nm diameter in length and extremely high drug loading of 39% IND and 2.3% SOD. Pharmacokinetics and biodistribution studies demonstrate the extended blood circulation and the strong pulmonary accumulation of the system after intravenous injection in the lipopolysaccharide (LPS)-induced inflammatory murine model. Particularly, the system allows a robust capacity to target pulmonary endothelium mostly due to the rod-shape and Ab coating effect. In vitro, the preparation shows the synergistic anti-inflammatory and antioxidant effects in LPS-activated endothelial cells. In vivo, the preparation exhibits superior pharmacodynamic efficacy revealed by significantly downregulating the inflammatory/oxidative stress markers, such as TNF-α, IL-6, COX-2, and reactive oxygen species (ROS), in the lungs. In conclusion, the codelivery system based on rod-like pure crystals could well target the pulmonary endothelium and effectively alleviate lung inflammation. The study offers a promising approach to combat pulmonary endothelium-associated diseases.

Keywords: Acute lung injury; Codelivery; Indomethacin; Inflammation; Nanocrystals; Pulmonary endothelium; Superoxide dismutase.