CD19-specific chimeric antigen receptor (CAR) T cells have demonstrated impressive responses in patients with relapsed and refractory B cell malignancies. However, many patients relapse or fail to respond to CD19 CAR T cells, demonstrating the need to improve its efficacy and durability. Current protocols for generating CAR T cells involve T cell activation through CD3 stimulation to facilitate efficient CAR transfer followed by ex vivo expansion with exogenous cytokines to obtain adequate cell numbers for treatment. Both T cell activation and expansion inevitably lead to terminal differentiation and replicative senescence, which are suboptimal for therapy. Interleukin-7 (IL-7) was previously shown to allow for lentiviral transduction of T cells in the absence of activation. In these studies, we used IL-7 to generate CD19 CAR T cells without stimulating CD3. Nonactivated and IL-7 cultured (NICE) CD19 CAR T cells were enriched with the T memory stem cell population, retained novel markers of stemness, had lower expression of exhaustion markers, and increased proliferative potential. Furthermore, our findings are consistent with engraftment of NICE CD19 CAR T cells and demonstrate a superior therapeutic response in both intraperitoneal and subcutaneous in vivo B cell lymphoma models. These results suggest that NICE CD19 CAR T cells may improve outcomes for B cell malignancies and warrant clinical evaluation.
© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.