Vector-borne pathogens, many of which cause major suffering worldwide, often circulate in diverse wildlife communities comprising multiple reservoir host and/or vector species. However, the complexities of these systems make it challenging to determine the contributions these different species make to transmission. We experimentally manipulated transmission within a natural multihost-multipathogen-multivector system, by blocking flea-borne pathogen transmission from either of two co-occurring host species (bank voles and wood mice). Through genetic analysis of the resulting infections in the hosts and vectors, we show that both host species likely act together to maintain the overall flea community, but cross-species pathogen transmission is relatively rare-most pathogens were predominantly found in only one host species, and there were few cases where targeted treatment affected pathogens in the other host species. However, we do provide experimental evidence of some reservoir-spillover dynamics whereby reductions of some infections in one host species are achieved by blocking transmission from the other host species. Overall, despite the apparent complexity of such systems, we show there can be 'covert simplicity', whereby pathogen transmission is primarily dominated by single host species, potentially facilitating the targeting of key hosts for control, even in diverse ecological communities.
Keywords: Bartonella; Trypanosoma; dilution and amplification; host community composition; insecticide treatment; perturbation experiment.