Background: An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA).
Methods: To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios.
Results: The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines.
Conclusions: The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.
Keywords: Kalman filter; ketone measurement; pump failure; type 1 diabetes.