Comparison of ventilatory and oxygen consumption measurements of yearling Thoroughbred colts and fillies exercising unridden on an all-weather track

Vet J. 2023 Oct-Dec:300-302:106041. doi: 10.1016/j.tvjl.2023.106041. Epub 2023 Nov 4.

Abstract

Sex effects on ventilatory and oxygen consumption (V̇O2) measurements during exercise have been identified in humans. This study's aim was to evaluate the hypothesis that there are sex effects on ventilatory and V̇O2 measurements in exercising, untrained yearling Thoroughbreds (Tb). Forty-one Tbs (16 colts, 25 fillies; 19.8 ± 1.4 months old) were recruited. Physiological, ventilatory and exercise data were gathered from horses exercising unridden at high intensity on an all-weather track from a global positioning-heart rate unit and a portable ergospirometry system. Data were analysed with an unpaired Student's t-test and the Benjamini-Hochberg correction for multiple testing (P ≤ 0.05 significant). Mean bodyweight (BW, P = 0.002) and wither height (P = 0.04) were greater for colts than fillies. There were no differences in physiological and exercise data and absolute peak V̇O2 between groups. However, fillies had a higher mass specific peak V̇O2 (P = 0.03) than colts (121.5 ± 21.6 mL/kg.min vs. 111.9 ± 27.4 mL/kg.min). The peak breathing frequency was greater for fillies (P < 0.001) while the peak inspiratory (P < 0.001) and expiratory air flow (P < 0.001), peak expiratory tidal volume (VTE; P < 0.001) and peak minute ventilation (V̇E; P = 0.01) were greater for colts; there were no differences for peak VTE and V̇E when adjusted for BW. Differences in BW explain the differences in mass specific peak V̇O2 between groups. Given their morphological differences, it is likely that lung volumes and airway diameters are smaller for fillies, resulting in greater resistance and lower air flows and volumes. Further research is required to investigate the ventilatory differences and how they may change with maturation and impact performance.

Keywords: Exercise; Horse; Oxygen consumption; Sexual dimorphism; Ventilation.

MeSH terms

  • Animals
  • Exercise Test / veterinary
  • Female
  • Heart Rate
  • Horses
  • Humans
  • Male
  • Oxygen
  • Oxygen Consumption*
  • Respiration*
  • Weather

Substances

  • Oxygen