As a result of the accumulation of plastic in the environment, microplastics have become part of the food chain, boosting the resistance of fungi and bacteria which can frequently encounter human beings. Employing photocatalytic degradation is a possible route towards the removal of chemical and biological pollutants, such as plastics and microplastic wastes as well as microorganisms. Using biowaste materials to design hybrid nanoparticles with enhanced photocatalytic and antimicrobial features would uphold the principles of the circular bioeconomy. Here, two unexpensive semiconductors-namely titanium dioxide (TiO2) and zinc oxide (ZnO) - were synthetized through solvothermal synthesis and combined with humic substances deriving from agrifood biomass. The preparation led to hybrid nanoparticles exhibiting enhanced ROS-generating properties for simultaneous applications as antimicrobial agents against different bacterial and fungal strains and as photoactive catalysts to degrade polylactic acid (PLA) microplastics under UVA and solar irradiation. In comparison to bare nanoparticles, hybrid nanoparticles demonstrated higher antibacterial and antimycotic capabilities toward various pathogenic microorganisms as well as advanced photocatalytic activity in the degradation of PLA with a carbonyl index reduction in the range of 15-23%, thus confirming a noteworthy ability in microplastics photodegradation under UVA and solar irradiation.
Keywords: Antimicrobial-antimycotic; Biomass; Humic substances; Hybrid colloidal nanoparticles; Microplastics; Photocatalysis; Reactive oxygen species.
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.