We previously performed comprehensive analyses of genes hypermethylated promoter regions and downregulated transcripts in the hippocampal dentate gyrus (DG) of rats upon weaning at postnatal day (PND) 21 after developmental exposure to 6-propyl-2-thiouracil (PTU), valproic acid, and glycidol (GLY), all of which are known to show irreversible effects on hippocampal neurogenesis in adulthood on PND 77. Here, we selected neurotransmitter and neurogenesis-related genes for validation analysis of methylation and expression. As a result, Nrgn by GLY and Shisa7, Agtpbp1, and Cyp46a1 by PTU underwent DNA hypermethylation and sustained downregulation. Immunohistochemical analysis of candidate gene products revealed that the number of neurogranin (NRGN)+ granule cells was decreased in the ventral DG by GLY on PND 21 and 77 and by PTU on PND 21. Among the samples of developmental or 28-day young adult-age exposure to known developmental neurotoxicants in humans, i.e., lead acetate, ethanol, and aluminum chloride, a decrease of NRGN+ cells by ethanol was also observed on PND 77 after developmental exposure. Double immunohistochemistry analysis revealed that NRGN was expressed in mature granule cells, and a similar immunoreactive cell distribution was found for phosphorylated calcium/calmodulin-activated protein kinase, a NRGN downstream molecule. After developmental PTU exposure, the number of activity-regulated cytoskeleton-associated protein+ granule cells was also profoundly decreased in the ventral DG in parallel with the decrease in NRGN+ cells on PND 21. These results suggest that NRGN is a potential marker for suppression of synaptic plasticity in mature granule cells in the ventral DG.
Keywords: Developmental neurotoxicity; Hippocampal neurogenesis; Neurogranin; Neurotransmitter; Rat; Synaptic plasticity.
Copyright © 2023 Elsevier B.V. All rights reserved.