Cardiotocography (CTG) captured the fetal heart rate and the timing of uterine contractions. Throughout pregnancy, CTG intelligent categorization is crucial for monitoring fetal health and preserving proper fetal growth and development. Since CTG provides information on the fetal heartbeat and uterus contractions, which helps determine if the fetus is pathologic or not, obstetricians frequently use it to evaluate a child's physical health during pregnancy. In the past, obstetricians have artificially analyzed CTG data, which is time-consuming and inaccurate. So, developing a fetal health categorization model is crucial as it may help to speed up the diagnosis and treatment and conserve medical resources. The CTG dataset is used in this study. To diagnose the illness, 7 machine learning models are employed, as well as ensemble strategies including voting and stacking classifiers. In order to choose and extract the most significant and critical attributes from the dataset, Feature Selection (FS) techniques like ANOVA and Chi-square, as well as Feature Extraction (FE) strategies like Principal Component Analysis (PCA) and Independent Component Analysis (ICA), are being used. We used the Synthetic Minority Oversampling Technique (SMOTE) approach to balance the dataset because it is unbalanced. In order to forecast the illness, the top 5 models are selected, and these 5 models are used in ensemble methods such as voting and stacking classifiers. The utilization of Stacking Classifiers (SC), which involve Adaboost and Random Forest (RF) as meta-classifiers for disease detection. The performance of the proposed SC with meta-classifier as RF model, which incorporates Chi-square with PCA, outperformed all other state-of-the-art models, achieving scores of 98.79%,98.88%,98.69%,96.32%, and 98.77% for accuracy, precision, recall, specificity, and f1-score respectively.
Keywords: ANOVA; Chi-square; Independent component analysis; Machine learning; Principal component analysis; Stacking classifier; Voting classifier.
Copyright © 2023 Elsevier Ltd. All rights reserved.