The design and development of electrospun nanofibrous yarns (ENYs) have attracted intensive attentions in the fields of biomedical textiles and tissue engineering, but the inferior fiber arrangement structure, low yarn eveness, and poor tensile properties of currently-obtained ENYs has been troubled for a long time. In this study, a series of innovative strategies which combined a modified electrospinning method with some traditional textile processes like hot stretching, twisting, and plying, were designed and implemented to generate poly (L-lactic-acid) (PLLA) ENYs with adjustable morphology, structure, and tensile properties. PLLA ENYs made from bead-free and uniform PLLA nanofibers were fabricated by our modified electrospinning method, but the as-spun PLLA ENYs exhibited relatively lower fiber alignment degree and tensile properties. A hot stretching technique was explored to process the primary PLLA ENYs to improve the fiber alignment and crystallinity, resulting in a 779.7% increasement for ultimate stress and a 470.4% enhancement for Young's modulus, respectively. Then, the twisting post-treatment was applied to process as-stretched PLLA ENYs, and the tensile performances of as-twisted ENYs was found to present a trend of first increasing and then decreasing with the increasing of twisting degree. Finally, the PLLA threads made from different numbers of as-stretched PLLA ENYs were also manufactured with a traditional plying process, demonstrating the feasibility of further improving the yarn diameter and tensile properties. In all, this study reported a simple and cost-effective technique roadmap which could generate high performance PLLA nanofiber-constructed yarns or threads with controllable structures like highly aligned fiber orientation, twisted structure, and plied structure.
Keywords: Electrospinning; Nanofiber threads; Nanofibrous yarns; Twisted yarns.
Copyright © 2023 Elsevier Ltd. All rights reserved.