The development of novel eco-friendly materials like chitosan for food storage and preservation has become crucial in eliminating plastic packaging and minimizing waste. In this work, cinnamaldehyde has been encapsulated in chitosan nanoparticles and subsequently incorporated into a 2 % chitosan film. The obtained nanoparticles achieved an average radius size of 89.80 nm, PDI of 0.40, and spherical morphology determined by SEM. Cinnamaldehyde was encapsulated in chitosan nanoparticles achieving values of encapsulation close to 7 %, showing a biphasic release profile with sustained release during 5 days. Films with an average thickness of 0.124 mm and elongation at break of 63.66 % to 76.50 % were obtained. Finally, the antimicrobial properties of the films was tested showing reduction values in total aerobic value of 4.85 log cfu/g, total coliform of 1.26 log cfu/g and grow potential value of < 0.5 log10 for Listeria monocitogenes over 20 days.
Keywords: Active packaging; Antimicrobial film; Bio-nanocomposites; Chitosan; Cinnamaldehyde nanoparticles.
Copyright © 2023 Elsevier Ltd. All rights reserved.