Tobacco products are evolving at a pace that has outstripped tobacco control, leading to a high prevalence of tobacco use in the population. Researchers have been tirelessly developing suitable techniques to assess these products' emissions, toxicity, and public health impact. The nonclinical testing of tobacco products to assess the chemical profile of emissions is needed for evidence-based regulations. This testing has largely relied on targeted analytical methods that focus on constituent lists that may fall short in determining the toxicity of newly designed tobacco products. Nontargeted analysis (NTA), or the process of identifying and quantifying compounds within a complex matrix without prior knowledge of its chemical composition, is a promising technique for tobacco regulation, but it is not without challenges. The lack of standardized methods for sample generation, sample preparation, chromatographic separation, compound identification, and data analysis and reporting must be addressed so that the quality and reproducibility of the data generated by NTA can be benchmarked. This review discusses the challenges and highlights the opportunities of NTA in studying tobacco product constituents and emissions.